Code: 20CE6601

III B.Tech - II Semester – Regular Examinations - APRIL 2024

ADVANCED PAVEMENT MATERIALS (HONORS in CIVIL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks			
		UNIT-I			IVIAIKS			
1	a)	Draw the structure of pavement. Explain the	L3	CO1	7 M			
	Í	functions of different components of						
		pavement structure.						
	b)	Explain the significance ESWL in pavement	L2	CO1	7 M			
		design.						
OR								
2	a)	Describe the factors affecting pavement	L2	CO1	7 M			
		performance.						
	b)	Discuss the need for material	L1	CO1	7 M			
		characterization.						
UNIT-II								
3	a)	Explain the compaction properties of soil.	L2	CO2	7 M			
	b)	How the strength of the soil is determined	L3	CO2	7 M			
		using CBR test. Explain in detail.						

	OR						
4	a)	Explain the classification of soil.	L2	CO2	7 M		
	b)	Define stabilization. Discus about the soil-	L1	CO2	7 M		
		cement stabilization.					
	l			<u>'</u>			
UNIT-III							
5	a)	Describe the Gradation properties of	L2	CO3	7 M		
		aggregates.					
	b)	Explain the factors affecting the recycled	L2	CO3	7 M		
		aggregates.					
	ı	OR	Ī				
6	a)	List out various tests on aggregate. Discuss	L2	CO3	7 M		
		any one test on aggregates.					
	b)	What are the various factors affecting	L2	CO3	7 M		
		performance of unbound aggregate layers?					
UNIT-IV							
7	a)	What are the applications of geotextiles?	L2	CO4	7 M		
	b)	Discuss the functions of geocomposites.	L1	CO4	7 M		
OR							
8	a)	What is geomembrane? Describe the	L2	CO4	7 M		
		applications of geomembrane in pavement					
		construction.					
	b)	Explain the geogrid functions and	L2	CO4	7 M		
		applications in brief.					
	TINITE X7						
9	۵)	Explain the application of fly ash	12	CO5	7 M		
) 	a)	Explain the application of fly ash.	L2	003	/ 1 V1		

	b)	Discuss the function of GGBS in pavement	L1	CO5	7 M		
		construction.					
OR							
10	a)	What are the applications of quarry dust?	L2	CO5	7 M		
	b)	Explain the functions of rice husk dust.	L2	CO5	7 M		